17 output_file =
"nu_loss_data.dat"
21 sunet_path =
"sunet_complete"
22 nuclei_names = np.loadtxt(sunet_path,usecols=[0],unpack=
True,dtype=str)
26 if not os.path.exists(
'bp'):
28 if not os.path.exists(
'bm'):
32 for ind,n
in enumerate(tqdm(nuclei_names)):
33 baselink =
'"https://www-nds.iaea.org/relnsd/v0/data?fields=decay_rads&nuclides='
35 user_agent =
' -U "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:77.0) Gecko/20100101 Firefox/77.0" '
36 bp = baselink+n+
'&rad_types=bp"'
37 bm = baselink+n+
'&rad_types=bm"'
45 if not os.path.exists(
"bp/"+nuc+
".csv"):
46 cmd =
"wget -O bp/"+nuc+
".csv "+user_agent+bp
49 if not os.path.exists(
"bm/"+nuc+
".csv"):
50 cmd =
"wget -O bm/"+nuc+
".csv "+user_agent+bm
57 for ind,n
in enumerate(tqdm(nuclei_names)):
59 df_bm = pd.read_csv(
"bm/"+n+
".csv",sep=
',',na_values=
" ")
61 df_bm = pd.DataFrame()
63 df_bp = pd.read_csv(
"bp/"+n+
".csv",sep=
',',na_values=
" ")
65 df_bp = pd.DataFrame()
69 df_bm[
'intensity_beta'] = pd.to_numeric(df_bm[
'intensity_beta'], errors=
'coerce')
70 df_bm[
'anti_nu_mean_energy'] = pd.to_numeric(df_bm[
'anti_nu_mean_energy'], errors=
'coerce')
71 av_anu = np.nansum(df_bm[
"anti_nu_mean_energy"].values*df_bm[
"intensity_beta"].values/100.)
72 nu_loss[n] = av_anu/1000
74 df_bp[
'intensity_beta'] = pd.to_numeric(df_bp[
'intensity_beta'], errors=
'coerce')
75 df_bp[
'nu_mean_energy'] = pd.to_numeric(df_bp[
'nu_mean_energy'], errors=
'coerce')
76 df_bp[
'energy_ec'] = pd.to_numeric(df_bp[
'energy_ec'], errors=
'coerce')
77 df_bp[
'intensity_ec'] = pd.to_numeric(df_bp[
'intensity_ec'], errors=
'coerce')
78 av_ec = np.nansum(df_bp[
"energy_ec"].values*df_bp[
"intensity_ec"].values/100.)
80 av_nu = np.nansum(df_bp[
"nu_mean_energy"].values*df_bp[
"intensity_beta"].values/100.)
84 nu_loss[n] += (av_nu+av_ec)/1000
87 nu_loss[n] = (av_nu+av_ec)/1000
92 for n
in tqdm(nuclei_names):
94 if ignore_zeros
and nu_loss[n] == 0:
96 out += n.rjust(5)+
" "+
"{:16.6E}".
format(nu_loss[n])+
"\n"
99 with open(output_file,
"w")
as f: